Senin, 24 Desember 2012

mading kita --NewToN News---


EUREKA!!!!!
telah hadir kembali mading kita dgn tema __gallery on december___ silakan di lihat,, dibaca,,, smoga manfaat,,,,

kritik dan saran sangat kami harapkan agar pembuatan mading selanjutnya bisa lebih baik lagi,,, aamiin :)_--

Kamis, 29 November 2012

Fermi NASA mengukur ‘Kabut’ Kosmik yang dihasilkan Sinar Bintang Purba


Selasa, 20 November 2012 - Astronom menggunakan data dari Teleskop Antariksa sinar Gamma Fermi milik NASA membuat pengukuran sinar bintang paling akurat di alam semesta dan memakainya untuk menghitung jumlah total cahaya dari semua bintang yang pernah bersinar, memenuhi tujuan misi yang utama.

 “Cahaya tampak dan ultraviolet dari bintang terus bergerak di alam semesta bahkan setelah bintang tersebut berhenti bersinar, dan ini menciptakan medan radiasi fosil yang dapat kita jelajahi menggunakan sinar gamma dari sumber jauh,” kata kepala ilmuan   Marco Ajello, seorang peneliti pasca doctoral di  Kavli Institute for Particle Astrophysics and Cosmology Stanford University California dan Space Sciences Laboratory University of California Berkeley.Sinar gamma adalah bentuk cahaya yang paling berenergi. Sejak peluncuran Fermi tahun 2008,  Large Area Telescope (LAT) mengamati seluruh langit mencari sinar gamma energi tinggi setiap tiga jam, menciptakan peta alam semesta paling detail mengenai energi ini.Jumlah total sinar bintang di alam semesta diketahui para astronom sebagai cahaya latar belakang luar galaksi – extragalactic background light (EBL). Untuk sinar gamma, fungsi EBL seperti semacam kabut kosmik. Ajello dan timnya menyelidiki EBL dengan mempelajari sinar gamma dari 150 blazar, atau galaksi yang ditenagai oleh lubang hitam, yang dengan kuat dideteksi memiliki energy lebih besar dari 3 miliar electron volt (GeV), atau lebih dari satu miliar kali energi cahaya tampak.“Dengan lebih dari seribu yang telah dideteksi saat ini, blazer adalah sumber paling umum yang dideteksi Fermi, namun sinar gamma pada energy ini hanya sedikit dan jauh, itu mengapa perlu empat tahun data untuk membuat analisis ini,” kata anggota tim  Justin Finke, astrofisikawan dari Naval Research Laboratory Washington.Saat materi jatuh ke lubang hitam supermasif galaksi, sebagian darinya dipercepat keluar pada kecepatan nyaris sama dengan cahaya dalam jet yang menuju ke arah berlawanan. Ketika satu dari jet ini kebetulan mengarah ke Bumi, galaksinya tampak sangat cemerlang dan digolongkan sebagai sebuah blazar.Sinar gamma yang dihasilkan dalam jet blazar bergerak melintasi miliaran tahun cahaya ke Bumi. Saat perjalanannya, sinar gamma melewati kabut cahaya tampak dan ultraviolet yang dipancarkan oleh bintang yang terbentuk sepanjang sejarah alam semesta.Biasanya, sinar gamma bertabrakan dengan sinar bintang dan mengubahnya menjadi pasangan partikel – satu elektron dan pasangan anti materinya, satu positron. Ketika ini terjadi, sinar gamma hilang. Akibatnya, proses ini mengecilkan sinyal sinar gamma mirip seperti kabut membuat redup mercusuar yang jauh. Dari studi pada blazar dekat, para ilmuan telah menemukan seberapa banyak sinar gamma harus dipancarkan pada energi tertentu. Blazar yang lebih jauh menunjukkan lebih sedikit sinar gamma pada energy tinggi – khususnya di atas 25 GeV – karena penyerapan oleh kabut kosmik. Blazar terjauh kehilangan paling banyak sinar gamma energi tingginya.Para peneliti kemudian menentukan atenuasi rata-rata sinar gamma sepanjang tiga jangkauan jarak antara 9.6 miliar tahun lalu dan sekarang. Dari pengukuran ini, para ilmuan mampu memperkirakan ketebalan kabut. Untuk mempertimbangkan pengamatan, rata-rata kepadatan bintang di alam semesta adalah sekitar 1,4 bintang per 100 miliar tahun cahaya kubik, yang artinya rata-rata jarak antar bintang di alam semesta adalah sekitar 4.150 tahun cahaya. Sebuah makalah menjelaskan temuan ini dalam Science Express.“Hasil Fermi membuka kemungkinan menarik dari pembatasan periode pembentuk bintang alam semesta tertua, sehingga memberi panggung bagi  James Webb Space Telescope NASA,” kata Volker Bromm, astronom dari University of Texas, Austin, yang berkomentar atas temuan ini. “Secara sederhana, Fermi memberi kita gambaran bayangan bintang pertama, sementara Webb akan secara langsung mendeteksinya.” Mengukur cahaya latar belakang ekstra galaksi adalah salah satu tujuan misi utama Fermi.“Kami sangat gembira mengenai prospek memperluas pengukuran ini lebih jauh lagi,” kata  Julie McEnery, ilmuan proyek misi dari  Goddard Space Flight Center Greenbelt, Md.Goddard mengatur rekanan penelitian fisika partikel dan astrofisika Fermi. Fermi dikembangkan dalam kerjasama antara Kementrian Energi AS dengan kontribusi dari lembaga akademis dan mitra dari Prancis, Jerman, Italia, Jepang, Swedia, dan AS.Sumber berita:NASA.

sejarah fisika modern

Sejarah fisika dimulai pada tahun sekitar 2400 SM, ketika kebudayaan Harappan menggunakan suatu benda untuk memperkirakan dan menghitung sudut bintang di angkasa. Sejak saat itu fisika terus berkembang sampai ke level sekarang. Perkembangan ini tidak hanya membawa perubahan di dalam bidang dunia benda, matematika dan filosofi namun juga, melalui teknologi, membawa perubahan ke dunia sosial masyarakat. Revolusi ilmu yang berlangsung terjadi pada sekitar tahun 1600 dapat dikatakan menjadi batas antara pemikiran purba dan lahirnya fisika klasik. Dan akhirnya berlanjut ke tahun 1900 yang menandakan mulai berlangsungnya era baru yaitu era fisika modern. Di era ini ilmuwan tidak melihat adanya penyempurnaan di bidang ilmu pengetahuan, pertanyaan demi pertanyaan terus bermunculan tanpa henti, dari luasnya galaksi, sifat alami dari kondisi vakum sampai lingkungan subatomik.Istilah fisika modern diperkenalkan karena banyaknya fenomena-fenomena mikroskopis dan hukum-hukum baru yang ditemukan sejak tahun 1890. Fenomena mikroskopis yaitu fenomena-fenomena yang tidak dapat dilihat secara langsung, seperti elektron, proton, neutron, atom, dan sebagainya. Ahli fisika telah mencoba memecahkan persoalan tentang struktur atom, elektron, radiasi dengan fisika klasik. Namun, tidak berhasil menerangkan fenomena-fenomena tersebut. Karena itu para ahli fisika mencari ilmu dan model-model lain yang baru. Dengan didapatnya teori-teori baru yang daat menerangkan fenomena-fenomena mikroskopis itu, maka fisika telah memperluas ilmu ke arah yang lebih jauh lagi.
Meskipun mekanika klasik hampir cocok dengan teori klasik lainnya seperti elektrodinamika dan termodinamika klasik, ada beberapa ketidaksamaan ditemukan di akhir abad 19 yang hanya bisa diselesaikan dengan fisika modern. Khususnya, elektrodinamika klasik tanpa relativitas memperkirakan bahwa kecepatan cahaya adalah relatif konstan dengan Luminiferous aether, perkiraan yang sulit diselesaikan dengan mekanik klasik dan yang menuju kepada pengembangan relativitas khusus. Ketika digabungkan dengan termodinamika klasik, mekanika klasik menuju ke paradoks Gibbs yang menjelaskan entropi bukan kuantitas yang jelas dan ke penghancuran ultraviolet yang memperkirakan benda hitam mengeluarkan energi yang sangat besar. Usaha untuk menyelesaikan permasalahan ini menuju ke pengembangan mekanika kuantum.
Seperti kata Newton dalam Makna Fisika Baru dalam Kehidupan:
...menciptakan teori baru bukan berarti merobohkan gudang tua untuk dibangun gedung pencakar langit diatasnya. Ini lebih seperti mendaki gunung, makin ke atas makin luas pandangannya, makin menemukan hubungan antara titik awal pendakian dengan hal-hal disekelilingnya yang ternyata sangat kaya raya dan tak terduga sebelumnya. Namun titik awal tersebut tetap ada dan dapat dilihat, meskipun tampak lebih kecil dari pemandangan luas yang kita peroleh dari hasil perjuangan mengatasi rintangan selama mendaki ke atas.
Pada tahun 1900, Max Planck memperkenalkan ide bahwa energi dapat dibagi-bagi menjadi beberapa paket atau kuanta. Ide ini secara khusus digunakan untuk menjelaskan sebaran intensitas radiasi yang dipancarkan oleh benda hitam. Pada tahun 1905, Albert Einstein menjelaskan efek fotoelektrik dengan menyimpulkan bahwa energi cahaya datang dalam bentuk kuanta yang disebut foton. Pada tahun 1913, Niels Bohr menjelaskan garis spektrum dari atom hidrogen, lagi dengan menggunakan kuantisasi. Pada tahun 1924, Louis de Broglie memberikan teorinya tentang gelombang benda.
Teori-teori di atas, meskipun sukses, tetapi sangat fenomenologikal: tidak ada penjelasan jelas untuk kuantisasi. Mereka dikenal sebagai teori kuantum lama. Frase "Fisika kuantum" pertama kali digunakan oleh Johnston dalam tulisannya Planck's Universe in Light of Modern Physics (Alam Planck dalam cahaya Fisika Modern).
Mekanika kuantum modern lahir pada tahun 1925, ketika Werner Karl Heisenberg mengembangkan mekanika matriks dan Erwin Schrödinger menemukan mekanika gelombang dan persamaan Schrödinger. Schrödinger beberapa kali menunjukkan bahwa kedua pendekatan tersebut sama.
Heisenberg merumuskan prinsip ketidakpastiannya pada tahun 1927, dan interpretasi Kopenhagen terbentuk dalam waktu yang hampir bersamaan. Pada 1927, Paul Dirac menggabungkan mekanika kuantum dengan relativitas khusus. Dia juga membuka penggunaan teori operator, termasuk notasi bra-ket yang berpengaruh. Pada tahun 1932, Neumann Janos merumuskan dasar matematika yang kuat untuk mekanika kuantum sebagai teori operator.
Pada 1927, percobaan untuk menggunakan mekanika kuantum ke dalam bidang di luar partikel satuan, yang menghasilkan teori medan kuantum. Pekerja awal dalam bidang ini termasuk Dirac, Wolfgang Pauli, Victor Weisskopf dan Pascaul Jordan. Bidang riset area ini dikembangkan dalam formulasi elektrodinamika kuantum oleh Richard Feynman, Freeman Dyson, Julian Schwinger, dan Tomonaga Shin'ichirō pada tahun 1940-an. Elektrodinamika kuantum adalah teori kuantum elektron, positron, dan Medan elektromagnetik, dan berlaku sebagai contoh untuk teori kuantum berikutnya.
Interpretasi banyak dunia diformulasikan oleh Hugh Everett pada tahun 1956. Teori Kromodinamika kuantum diformulasikan pada awal 1960-an. Teori yang kita kenal sekarang ini diformulasikan oleh Polizter, Gross and Wilzcek pada tahun 1975. Pengembangan awal oleh Schwinger, Peter Higgs, Goldstone dan lain-lain. Sheldon Lee Glashow, Steven Weinberg dan Abdus Salam menunjukan secara independen bagaimana gaya nuklir lemah dan elektrodinamika kuantum dapat digabungkan menjadi satu gaya lemah elektro.
Mekanika kuantum sangat berguna untuk menjelaskan apa yang terjadi di level mikroskopik, misalnya elektron di dalam atom. Atom biasanya digambarkan sebagai sebuah sistem di mana elektron (yang bermuatan listrik negatif) beredar seputar nukleus (yang bermuatan listrik positif). Menurut mekanika kuantum, ketika sebuah elektron berpindah dari energi level yang lebih tinggi (misalnya n=2) ke energi level yang lebih rendah (misalnya n=1), energi berupa sebuah cahaya partikel, foton, dilepaskan:

E = hv

di mana
E adalah energi (J),
h adalah tetapan Planck, h = 6,63 x 10-34 (Js)
v adalah frekuensi dari cahaya (Hz).

Dalam spektrometer masa, telah dibuktikan bahwa garis-garis spektrum dari atom yang di-ionisasi tidak kontinu; hanya pada frekuensi/panjang gelombang tertentu garis-garis spektrum dapat dilihat. Ini adalah salah satu bukti dari teori mekanika kuantum.